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We take a detailed study on the restricted solid-on-s@i80S model with finite nearest-neighbor height
differenceS. We numerically show that, for all finite values §fthe system belongs to the random-deposition
(RD) class in the early time stage and then crossovers to the Kardar-Parisi-@fngclass. We find that the
crossover time scales & with the crossover exponerft=2.06. Besides, we analytically study the RSOS
model by grouping consecutive sites into local configurations to obtain the Markov chain describing the time
evolution of the probability distribution of these local configurations. For demonstration, we use the RSOS
model with S=2 as an explicit example and calculate the correlation functions and even scaling exponents
based on the obtained probability distribution of local configurations. The results are very consistent with those
obtained from direct simulation of the RSOS model.
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[. INTRODUCTION surface is also, in the coarse-grained sense, described by a
continuum equation with additive noi§g&—4]. It is generally
%elieved that there is a correspondence between discrete
. . . rowth models and continuous stochastic Langevin equa-
The comprehension of this phenomenon plays an importari, s The most common way of establishing the link is to

fole in understanding and coqtrollin_g a k.)t of interestingcompare the obtained values of the scaling exponents. The
growth processes. Both numerical simulations and real exs

. ) other way is to derive the continuum equation from a given
periments have o.bserve.d that a large var|e'ty of g'rowth PrOgiscrete model analyticallje,7]. However, the higher order
cesses can be divided into only a few universality classe

. . o ffects are inevitably neglected in these approadited.
[%_4]' Eachl_class IS chargc’;}enzed Ey the specific \éalrl:es hus, we expect that the crossover behavior, if any, in the
the two scaling exponents: the roughness expoaamd the  yiscrate models would be obscure in the corresponding con-
growth exponen{B. Namely, withh(x,t) denoting the sur-

: - ) . tinuum equation obtained from these analytical approaches.
face height at position and timet starting from a flat sub-  gjnce every approach has its own merit and limitation, any
strate, the surface width satisfies the dynamic scaling ansatgiarnative analytical approach to study these growth models

Recently, there have been plenty of studies on the ph
nomenon of kinetic roughening of growing interfagés-4].

(3] will be of particular interest.
_— t Among the various discrete growth models, the restricted
w(L,t) = {({[h(x,t) = h() )}2 ~ L“f(l_—z), (1) solid-on-solid (RSOS model with finite nearest-neighbor

height differenceS, proposed by Kim and Kosterlit8], has
wherelL is the lateral system size and the scaling functiondrawn much attention for its simplicity and wide applicabil-
f(y) ~y# for y<1 andf(y) ~ constant fory> 1 with the dy- ity, such as the far-from-equilibrium crystal growth at low
namic exponent=a/ 3. Here and throughout this paper, the temperature$l—4]. For instance, a recent experiment shows
overbar denotes spatial average and the angular brackets dBat the(001)-surface morphology of GaAs annealed at fixed
note statistical ensemble-average. The correlation functiofemperature and pressure can be well explained by the an-

obeys similar dynamic scaling nealed version of the RSOS model by including the next-
) nearest-neighbor interactigf]. The study of001)-oriented

G(r.t) = (h(x +r.t) = h(x.n)]D) ~ r2« (_) 2 GaAs surfaces is technologically important, since it is the

(r.y=(h( ) =heHT) 9\ 1z @ starting point for fabricating the majority of high-speed op-

wherer=|r| and the scaling functiog(y) ~y? for y<1 and tpelectronic deyices and the roughn.ess of surfaces may dete-
riorate the optical properties of devices. Moreover, even the

g(y) ~ constant fqry>1. ) chemically induced surface roughening occurring through
Note that the important features of growing surfaces usUg, e exothermic release of reaction energy in catalytic reac-
ally can be analyzed and described by some microscopif,ng on the substrate can also be described in the framework

rules. A number of discrete quels for growth phenomenzbf the RSOS modef10]. In the course of roughening via

have been proposed and studied successfully by computgg oihermic catalytic reactions, the reaction energy is trans-
simulations. On the other hand, evolution of the growingsereq 1o substrate atoms. Thus, it may induce the substrate
atoms out of their original sites and consequently create va-

cancies. Since the roughness of a practical catalyst may ef-

*Corresponding author; email address: wjtzeng@mail.tku.edu.twfect its global activity, the understanding of such roughening
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phenomena may guide the ways for designing new catalyst:

and controlling catalytic processes. L P e
It is generally believed that the RSOS model, in the long ; 12 "li
time and large distance limit, belongs to the universality 2|~ 1 ) - 7]
class of the Kadar-Parisi-Zhaiii§PZ) equation/11]. Indeed, L - 51333:1 /2 ]
the continuum limit of the RSOS model wiB=1 has been 1 13 g
o

analytically showr{12,13 to belong to the class of the KPZ =
equation. However, there still lacks extensive studies on the&
general RSOS model with any possible finBeThe single-

step model[14], closely related to the RSOS model, is also
believed to belong to the KPZ universality class. Both the
single-step model and thgs=1) RSOS model exhibit fast
convergence into the KPZ scaling regimes in numerical
simulations. Since the height difference between two neigh- | s | ) | | ! 1
boring sites can only assume two valugsl or -1), the ’
single-step model is mathematically more tractgdlg]. In
particular, this model can be mapped onto some extensively FIG. 1. The log-log plot of the surface width versus the mean
studied models in equilibrium or nonequilibrium statistical surface height in the initial-stage growth process of the general
mechanics, such as the kinetic Ising modé#,1q, the (1+1)-dimensional RSOS model with the height difference restric-
asymmetric simple exclusion procg49], and the six-vertex tion S=1,4,16,64256, the system size=4096 sites, and aver-
model[14,15. Some properties of the single-step model canaged over 1000 independent runs.

thus be acquired analytically from the exact results of these

well-studied model$15,16. In contrast, less analytical study

has been conducted on the RSOS model. In addition, froraxtendS to infinity, the RSOS model reduces to the random
the experimental point of view, much interest is focused ordeposition(RD) model. The scaling exponeii of the RD

the very early time aspects of growing interfaces as encourmodel in(1+ 1)-dimensions is 1/2, quite different from that
tered in actual molecular-beam-epitaxial growth. This moti-of the (S=1) RSOS model, which is believed to be in the
vates us to take an extensive study on the general RSOZpz university class and should have the value 1/31in
model with any possible finite nearest-neighbor height differ-,. 1)-dimensions. Moreover, we know that the surface width

ences. . . . of the (S=1) RSOS model with a substrate of finite size will
The outline of this paper is as follows. In Sec. Il, the . . o
deposition rules of the RSOS model is described and we taksaturate as the growth time is large enough. This is not the

€ .
an extensive numerical study on the early time behavior of as€ of the RD model. The surface width of the RD model
the RSOS model with any finit8. In Sec. lll, the Markov

increases with the growth time~t2 and there is no satu-
chain to describe the time evolution of the probability distri- ration behavior. In this section, we concentrate on the initial-
butions for the local configurations is analytically studied

stage growth behavior and look into how the scaling expo-
and we use the RSOS model wiBr2 as an explicit ex- nentB changes its value. In Fig. 1, we show the results from
ample. Finally, a summary is given in Sec. IV.

log 10! h )

mean

the computer simulations of the RSOS model in
(1+1)-dimensions with different height difference restriction
Sin the early-time stage. We observe that the surface width
Il INITIAL-STAGE GROWTH PHENOMENA scales with timgéwhich is the average surface height heas
w~hl2_at the very early stage and then crossovers to an-

. . mean
fon\évﬁSTIrSt give the growth rules of the RSOS model asother scalingw~hrlrfgan For illustration, we draw straight

(1) Choose a site randomigay, sitex) among allL sites. lines with the slope equal to 1/2 and 1/3, r_espectively, along
() If [[h(x,t)+1]-h(x-1,0| =S and |[h(x,t]+1)—h(x the data to make_ the crossover more obwo_u_s. The_ mter_sec-
+11/<S addh(x,t) by 1 and add\t(=1/L) to the time tion of these straight lines defines the transition point. It in-
(’3) Otherwise,do nothing ' dicates that the RSOS model behaves like the RD model in
1) Repeat thé whole roéess the very early stage of the growth process and, after a dura-
(4) Rep P ; tion of time, it “feels” the restrictions on the height differ-

Note that, in the original paper of the RSOS model, the algnces and turns into the KPZ universality class. We numeri-

thors suggested that the average height of the surface, insteg lly find that the surface width in the initial-stage growth

O.f the numper of growth attempts, should be adopted as thSrocess satisfies the following dynamic scaling ansatz:

simulation time[8].
Since the growth rules of the RSOS model have a param-

eter S, one may wonder how this parameter affects the be-

havior of the surface of the RSOS model. In the original W(S!hmear):Tw(S)f<hmin> (3)

paper of the RSOS mod¢8], the authors found that for (S

small S, the scaling exponenB is unchanged. Thus they

claimed that the behavior of the surface of the RSOS model

is independent of the paramet®&r However, if one tries to  with
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R A ~ 71(SY2. Thus, the scaling exponet2. The numerical
value of obtained from the simulation is indeed very close
_ to 2. In a word, the RSOS model with any finite nearest-
neighbor height differencg belongs to the KPZ universality
class after a long transient time characterized by the scaling
exponent{ and the RSOS model witB=c reduces to the

, RD model. In comparison, a recent studys] shows that the

u RSOS model with any finite hopping distarigalso belongs

to the KPZ universality class and the RSOS model With
w0 7 = belongs to the universality class of the Villain-Lai-Das

- - Sarma equatiofil9].
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In the following, the local configurations of the RSOS
FIG. 2. The log-log plot of the transition mean height(S),  model and their probability distribution will be investigated
versus the restriction on the nearest-neighbor height differ8de  in detail. We define the local configurations through the
the general RSOS model {11 +1)-dimensions. The straight line is height differences between nearest neighbors, because the
obtained by least squares fit to the data with the crossover exponeghsolute height of each site keeps increasing and only the
equal to 2.06. The inset shows excelle_nt data cqllapse of the Cuvgfeight differences are relevant in determining the success of
from Fig. 1. It confirms that the scaling k_)ehawor of the ger_lerala growth attempt. By juxtaposing two consecutive height dif-
RSOS model crossovers from the RD regime to the KPZ regime. torances, we get a three-site local configuration defined as
K,={h(x=1)-h(x),h(x)-h(x+1)} for the one centered at
Nmean [hmead (S ]2 for hpmean< (), The three-site local configurations have the property that for
% - [Nead (T3 for 7(S) < hyean< L7, each successful growth at sitethree and only thredocal
configurations(K,_;, K,, and K,,;) change to new states
(4) while all the others remain intact. In this way, the growth
problem can be redefined in terms of the finite-state automata
in which 7,(S) and 7,,(S) denote the transition mean height [20]. Consideration extended to local configurations with
and the transition surface width, respectively. The inset ofnore sites is straightforward.
Fig. 2 gives the scaling plot, which shows excellent data Next, we will use the(S=2) RSOS model as an explicit
collapse of the original curves from Fig. 1. In Fig. 2, we alsoexample for demonstration. We will analytically obtain the
show the scaling relation between the transition mean heigtateady-state probability distributions of the local configura-
(S andS: 7,(S) ~ S with ~2.06. Next, we give a Flory- tions and then calculate the correlation functions and even
type scaling argument to explain the origin of this scalingthe scaling exponents based on the obtained probability dis-
behavior. Recall that the RSOS model is just the RD modelributions of local configurations. For théS=2) RSOS
with restrictions on the height differences. In the beginningmodel, the height difference between consecutive sites can
of the growth process, there is almost no chance for th@ssume the values +2, +1, 0, -1, or -2 and thus there are 25
neighboring-site height differences larger tfaand the be- possible three-site local configurations. The 25 possible local
havior of the surface is thus similar to that of the RD model.configurations are listed in Table IP;(x,t) is defined as the
From the properties of the RD model, we know that theprobability of the local configuratioik, to be of typei at
surface width at this stage increases with timdich is the timet. Since periodic boundary conditions are implemented,
average surface height hgraccording tow~h2. When the RSOS model is invariant under spatial translations.
the surface width is about the val@ethe surface will “feel”  Therefore,P;’s are independent of the position and we can
the restrictions and crossover to the KPZ class. So we get @rop the argument. Thus,P;(t) may be viewed as the prob-
relation between the transition mean height a8d S  ability of the local configuration, centered aty site, to be

TABLE I. The 25 possible three-site local configurations of {i8=2) RSOS model(L,R) denotes
[h(x=1)—h(x),h(x)—h(x+1)] with the center of the local configuration at ske

Type (L,R) Type (LR Type  (L,R) Type (L,R) Type (L.R)

1 2,2 2 2,1 3 (2,0 4 2,-1) 5 2,-2

1,2 7 (1,1 8 (1,0 9 (1,-1) 10 1,-2
11 (0,2 12 0,1 13 (0,0 14 0,-1) 15 0,-2
16 (-1,2) 17 (1,1 18  (-1,0 19  (-1,-D 20 (-1,-2
21 (-2,2) 22 (2,1 23 (-2,0 24 (-2,-)) 25  (-2,-2
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of typei at timet. If we know the equations governing the  TABLE II. Rules of changes of local configurations of the

dynamics of all theP;’s, we can study the time evolution and (S=2) RSOS model when an attempt of growth on sitis made.

find the asymptotic probability distribution of the local mor- Kx-1, Kx+1, andK, will change to new states simultaneously accord-

phology of the system. ing to the given rules. Note that for each givisp, there are five
Due to the left-right symmetry, we have the following Possibilities forK,-, andKy.,, respectively.

relations among th@;’s:

Kx—l Kx Kx+l Kx—l Kx Kx+1
P1=Pas, P2=Py, P3=Pi5, Ps=P1g, Pe=Pyy, - P s Lt
— — — —
P7=Pio, Pg=Pis P11=Py3 P12=Pig  P1g=Pa. 6—7 =2 6—7 12=7
(5) 11—12 2—6 8—3 11-12 3-7 13—8
16—17 9-4  16-17 14-9
We may further reduce the number of independent variables; . >, 10-5 2122 15— 10
]E)Oyiloerr_]rpl)lo?/gst_(t;es.translatlonal symmetry, which gives thel_)2 16511 152 2116
wing ! ’ 6—7 17— 12 6—7 22— 17
Py + P3+ P+ Ps=Pg+ Pyy+ Pig+ Py, 1112 4-8 18-13 11-12 5-9 23-18
16— 17 19-14 16-17 24-19
Py+ Pg+ Pg+ Pg=Py+ P+ Pigt Pyy. 6) 21522 20-15 2122 2520
The conservation of probability gives &5P,=1, which can 23 61 2—3 116
be reduced to the following equation with the help of Bx):  7—38 7—2 7—38 12-7
12—13 7—11 8—3 12— 13 8—12 13—-8
2(Py+ Py + Py + P+ Pg+ Py + Pg+ P+ Pyt Py + P
(P1#Po+Ps+ Pyt Po+ Pr+ Pyt Pryt Prpt Prg) + P 1718 9-4 1718 149
+Pg+Py3+ Py7+ Py =1. (M 2223 1055 2223 1510
Now we are ready to derive the dynamic equations. Th&—3 16—11  2-3 21-16
time evolution of the probabilities for local configurations 7—8 17-12  7-8 2217
can be described as a Markov process. If we kqéyit)}, 12—13 9-13 18-13 12-13 10-14 23-18
the values of the probabilities for local configurations at time17— 18 19514 17—18 2419
t, the probgbilities after a single growth atten{p}(t+At)} 2223 2015 2223 25,20
can be derived based on the growth rules and the mean-field 61 3.4 1156
approximation. Let us begin from the master equation 89 70 89 19,7
Ni(t+ At) = Ni(t) + >, [W;i (1) — W, (0], (8 13—14 12-16 8-3 13-14 13-17 13-8
i#] 18—19 9—14 18— 19 14-9
whereN;(t) denotes the abundance of local configuration of23—24 105 23-24 1510
typei at timet with N;(t)=LP;(t) andW;(t) is thetransition ~ 3—4 16—11  3-4 21—16
probability of the local configuration from typieto typej for ~ 8—9 17—-12  8-9 2217
a durationAt=1/L at timet. The transition rules are listed in 13—14  14-18 18-13 13-14 15-19 23-18
Table Il. SinceK,_; andK,,, are also affected by a success- 18— 19 19-14 18-19 24,19
ful growth at sitex, we need to know the probability distri- 53 54 2015 2324 25,20
_butlons _for the combmatlo_ns df, 4, Ky, and K)_<+_1. Such 5 161 155 11—-6
information should be provided by the probabilities of four-
. . . . . —10 7—2 9—-10 12—-7
site local configurations. Carrying on such exact analysis, wg
will face an unlimited input of local configurations of larger 4—1%  17—=21  8-3  14-15 18-22 138
sizes and the mathematics will become intractable. Thus, w&9— 20 9—4  19-20 14-9
have to make the mean-field approximation: assuming tha4— 25 105 2425 15-10
the consecutive local configurations are mixed randomly ac4—5 16—-11  4-5 2116
cording to their abundance. 9,10 17512 9510 22,17

This idea is further supported by simulation results inj4 15 19,23 18,13 14515 20524 2318
Tables Il and 1V, as we will explain below. To estimate the 19-520 19514 19520 24519

val f the r hn xponentwe intr
alue of the roughness exponentwe oduce o4 o5 2015 2475 25 .20
_ 1In{G(ry/G(r,)}

Ay fr, =
772 In(ryry) places in a random-walk interface are statistically indepen-
with 0<ry, r,<L andt—e. For a random-walk interface dent and we expeat, ;, to be very close to 1/2 for any
with periodic boundary conditions the growth exponent r,, r,<L. From the growth rules of the RSOS model, we
has been shown to be 1/R1]. Except for the periodic also expect that the correlations of the height differences are
boundary conditions, the height differences at differencemainly of short ranges and therefore the valueSaplf,r2

9
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TABLE lll. Simulation results of the exponent, ., defined in
Eq. (9) for the (S=2) RSOS model with.=4000 sitesf=5x 10°
monolayers, and averaged over 600 independent runs.

a1 Q412 agj4 A16/8 a32/16

0.572 0.5572 0.539 0.522 0.509

should converge to 1/2 for increasimg andr, under the
conditionrq,r,<L. As illustrated in Table Ill, the conver-
gence ofa is indeed very fast and the deviation is within
15% even for the lowest possible valuesrgfandr,. To

PHYSICAL REVIEW E 70, 021602(2004)

TABLE IV. Simulation results of the height-difference correla-
tions C,p(r) defined in Eq.(10) for the (S=2) RSOS model with
L=4000 sitest=5x 10° monolayers, and averaged over 600 inde-
pendent runs.

r 1 2 3 4

Can(r)

0.220 0.0654 0.0293 0.0165

(S=2) RSOS model and the relative deviation is within 6%.
From the obtained results, we are able to calculate the
correlation function. For example,

justify our conjecture for the range of the correlations, we
also measure the height-difference correlations, defined as

Can(r) ={[h(x+r1) = h(x+r=1)][h(x) —h(x-1)]).

(10)
The correlation of the height differences is indeed mainly\’\’here[h(wr 1)-h(x)]; denotes the quantity for the local con-

from the interactions of the nearest neighbors, as illustratefjduration of type. For the value of3(r =3,t—z), one may
in Table IV. augment” each type of local configuration with their pos-

The flow equations governing the evolutions of 1A sib_lg neighbors a(_:cording to_ relative probabilities in_the
are derived from the general formula E8). After we write spirit of the mean-flelq approximation. Then,_we can build a
down the form of eachw; with the help of Table I and new set of local configurations with larger sizes and_ obtain
collect the nonvanishing terms, we obtain the whole set of® values ofG(r=3,t—c). We may proceed to obtain the
flow equations for{P;(t), 0i}. The explicit expressions of 9rowth exponentay, defined in Eq.9). The values 'Of
these flow equations are given in the Appendix. We may2r,r, from the analytical calculation and from the direct
study the stationary behavior of these equations by settingimulation of the(S=2) RSOS model are both listed in Table
APi(t)/At:O,Di. The asymptotic solution obtained by VI for comparison. Note that, even with the device of “aug-
solving the set of the stationary equations with the help ofmentation” used in analytical calculations @, and ays,
Eqgs.(6) and(7) are listed in Table V. In that table, we also the results are still quite close to those from direct simulation
list the numerical results obtained from computer simulatiorf the (S=2) RSOS model. The results from analytical cal-
of the (S=2) RSOS model. Comparing these two results, weculations and those from computer simulations both show
see that our method gives quite accurate predictions of théhe tendency that, ,, converges toward 1/2. Subsequently,
probability distribution for the local configurations of the by iteration of Eq.(8) from t=0, we can obtain the time

Gr=1t—o)= 2 Pi(t — «){[h(x+ 1) = h(x)];}?,

11

TABLE V. The steady state probability distribution for the local configurations of #v2) RSOS model.
The data are obtained from solving the steady state solution of(Egsto (26) and from direct computer
simulations of thgS=2) RSOS model with.=8000 sitest=10° monolayers, and averaged over 500 inde-
pendent runs.

P, P, Ps P, Ps
Steady state solution 0.0510 0.0401 0.0339 0.0320 0.0513
Simulation 0.0542 0.0412 0.0338 0.0321 0.0493
Pes P; Pg Pg P1o
Steady state solution 0.0479 0.0397 0.0357 0.0406 0.0320
Simulation 0.0489 0.0391 0.0353 0.0390 0.0321
P11 P12 P13 P14 Pis
Steady state solution 0.0453 0.0392 0.0377 0.0357 0.0339
Simulation 0.0447 0.0385 0.0379 0.0353 0.0338
P16 P17 Pig P1g P2o
Steady state solution 0.0386 0.0383 0.0392 0.0397 0.0401
Simulation 0.0379 0.0376 0.0385 0.0391 0.0412
P21 P22 Pas P24 Pas
Steady state solution 0.0253 0.0386 0.0453 0.0479 0.0510
Simulation 0.0249 0.0379 0.0447 0.0489 0.0542
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TABLE VI. The growth exponenty ., defined in Eq.(9) for tical properties due to the increasing number of the scattering
the (S=2) RSOS model. Data are obtained from two different meth-centers. Among the various discrete growth models, the
ods: analytical calculations and computer simulations with  RSOS model with finite nearest-neighbor height difference
=4000 sitest=10° monolayers, and averaged ovef Iidependent S, proposed by Kim and Kosterlitz, has drawn much atten-

runs. tion for its simplicity and wide applicability. It is believed
that this model belongs to the KPZ universality class in the

az/1 az/2 @43 continuum limit. Due to the simplicity of its growth algo-
Analytical calculation 0558 0532 0522 rithm, it has been used as a template for modeling many

physical and chemical processes, e.g., the surface roughening
via exothermic catalytic reactions on the substrate.

However, the past studies in the literature all focus on the
RSOS model withS=1. Thus, we are motivated to take a
detailed numerical study on the RSOS model with arbitraty
nearest-neighbor height differen& We numerically show
that, for all finite values o8, the system belongs to the RD
shows the excellent data collapse Glr=1,0) and G(_r class in the early time stage and )':hen crossogers to the KPZ
=2,1) for ay,=0.558 andz=2-ay,=1.442. We do not in-  aq5 \We find that the crossover time scaleSawith the
cludeG(r,t) with r}2 in the scallng. plot of Fig. 3, since the numerically measured crossover expongaR.06. Then, a
values ofG(r,t) with r>2 are obtained through the opera- so|id physical argument is given to explain the crossover
tion of “augmentation” in our mean-field approximation and phenomenon and the value of the crossover exponent. This is
thus assume their saturation values as soon as aPthes  exactly the origin of the so-called “intrinsic width” in the
reach saturations. Solely from the local configurations of the/ery early time stage of the growth. Our argument can be
RSOS model, we have successfully obtained the growth eXextended to explain the origin of the intrinsic width in other
ponentsa andz. In this way, we demonstrate the effective- stochastic growth models such as the Family m¢22], the
ness of this approach for studying interfacial rougheningypolf-Villain model [23], and the Das Sarma-Tamborenea
phenomena. model [24], etc. Thegeneralizationto higher dimensions is

straightforward and we believe that the crossover exponent
(=2 is independent of dimensionality.
IV. CONCLUSION Besides, we propose an alternative analytical approach to

Recently, there have been plenty of studies on the pheStudy the local stochastic growth models, by grouping con-
nomenon of kinetic roughening of growing interfaces, suchsecutive sites into local configurations and then deriving the
as advances of bacterial colonies, electrochemical deposiime evolution of the probability distribution of these local
tion, flameless fire fronts, and molecular-beam-epitaxiaconfigurations. For demonstration, we use the RSOS model
growth [1-4]. The comprehension of this phenomenon playswith S=2 as an example and explicitly obtain the probability
an important role in understanding and controlling a lot ofdistribution of Iocal_conf|gurat|ons_. Based on the obtained
interesting growth processes and thus is technologically imtesults, we then derive the correlation functions and even the
portant. For example, the development of thin film roughnes§caling exponents: and z, which are consistent very well

of the optoelectronic devices has great influence on their op¥ith those obtained from direct simulation of the RSOS
model or the KPZ equation. Note that the values of

T ———r G(r>2,t) are obtained through the operation of “augmenta-
tion” in our mean-field approach and thus should not be used
to obtain the dynamics of the system. Only with the infor-
% 0 mation of G(r=1,t) andG(r=2,t), we are able to determine

. o the values of the scaling exponents, which fully confirm the
scaling relationa+z=2. In this way, we demonstrate the
feasibility and the effectiveness of this alternative approach
for studying the interfacial roughening phenomena governed
by local growth rules.

Computer simulation 0.572 0.561 0.551

evolution of P;’s (the probability distributions for local con-
figurationg and then perform the scaling plot Gf(r,t)/r?«
versust/r? to estimate the dynamical exponentFigure 3
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FIG. 3. The scaling plot o6(r,t) obtained from our local con-
figuration approach with=1 and 2 for thg/S=2) RSOS model. It
shows excellent data collapse wiilsy;=0.558 andz=2-ay, Here, we will give the explicit expressions of the flow
=1.442. equations fo{P;(t), Oi}. With the help of Eq(5), we only
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INITIAL-STAGE GROWTH PHENOMENA AND ...

need to list out the flow equations folP;(t),i
=1,...,9,11,12,13,16,17,21

AP;  Pg(Py+ P;+ P+ Py

At P+ Pg+ P+ Pg+ Py

P1(Py+ P3+ Py + Ps)
 Py+Pg+ P+ P+ Py’

(A1)

AP, N P1(Pa+ P3+ P4+ Ps)
At ® Py+Pgt Pyt Pigt Py
+ P7(P2+ P74+ Pip+ Pyy)

Py+ Pg+ P+ Pg+Pg
Po(P, + P; + Pg+ Pg)

- , (A2)
P,+ P;+Po+ Pigt+ Py

APg P3Py
—— =-2P;+
At P3+Pg+ Py + Pro+ Pig
+ Pg(P2+ P7+Pip+ Pyy)
P4+ Pg+ P74+ Pg+ Pg
Py(P, + P; + Pg + Pg)
P,+P;+ P+ Pig+ Py’

(A3)

AP, _ (Pg = Pg)(Py+ P7+Pip+ Pig)

A —PamPat

At P4+ Pg+ Py + Pg+ P
P11P3

Pyt Pg+ P+ P+ Py

(A4)

AP 2P,(P,+ Py + P+ P
—5=—P5+ 4(Py+ P74+ Py 17)’ (A5)
At P4+ Pg+ P+ Pg+ Py

AP Pe(P2 + Py + Py + Ps)
N - P2tPu-
At P1+Pg+Piy+ P+ Py
_ Pg(Py+ P7+ P+ Pyy)
P,+Pg+ Py +Pg+Pg
P11P1y

- , (A6)
P3+Pg+ P+ P+ Prg

AP P.,P
A b P+ Py, 11P12
At P3+Pg+ P+ Pt Pyg
Ps(P2 + P3+ Py + Ps)
P1+Pg+ Piy+ Pigt Py
_ Pi(Py+P7+ P+ Pyy)
P,+ Pg+ P+ Pg+ Py
P7(P4+ P7+Pg + Py)
Po+ P7+Pyy+ Pig+ Pry’

(A7)
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AP P1i(P1s— P
AP b= 2Pyt Pyye 11(P13~ Pg)
At P3+ Pg+ Py + P+ Pyg
_ Pg(Py+ P+ P+ Py
P4+ Pg+ P+ Pg+ Pg
P7(P4+ P7+ Pg + Py)
P+ P7+Pia+ Pig+ Pyy’

(A8)

APy 2P1,Pg

_:PS_ P9+2P8_

At P3+Pg+ P+ P+ Prg
2Pg(Py + P7+ Py + Pyy)

Py+Pg+P;+Pg+Pg '

(A9)

APy _ P,— P+ P11P1y
At P3+Pg+ Pyy+ Pt Pig
P11(Py+ P3+ Py + Py)
) P1+Pg+ Pyy+ Pig+ Py
P1g(P4 + P7+ Pg + Pg)
P,+P;+ P+ P+ Py’

(A10)

AP PP
12 _p,— 2P+ 11P12
At P3+Pg+ P+ Pt Pyg
P11(Py + P3+ Py + Ps)
P1+Pg+ P+ Pigt Py
o (P17~ P1)(Py+ P7+ Pg+ Po)
P+ P74+ Pio+ Pig+ Pyy

: (A1)

AP 2P,,P

13 _ .~ 3P, + 11P13

At P3+Pg+ Pyy+ Pt Prg
4 2P1a(Pa+ P7+ Pg+ Pg)

Py+ P7+ Ppp+ Pig+ Py’

(A12)

AP _ . (P21=P1g)(Py+ P3+ Py + Pg)
At 7T P+ Pg+ Pyt Pigt Py
P16(P4 + P7 + Pg + Pg)

Py+ P+ Pyt Pigt Py’

(A13)

APy _ o o, 2P1e(Pa+Ps+Py+ Py
At Py+Pgt+ P1y+ Pgt Py
2P17(Py+ P7+ Pg+ Py)
" Py P+ Pyt Pt Py’

(A14)

APy 2Py(Py+P3+Py+Py)

. Al5
At YPL+Pg+ Pyt Pigt Py (A9
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